$u^{\scriptscriptstyle \flat}$

b UNIVERSITÄT BERN ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

ARTORG Organs-on-Chip Facility (OOCF)

OOCF Equipment

December 19th, 2023 Rev. 1

Table of Contents

BioMEMS Laboratory
Plasma Cleaner Henniker and Harrick4
SPIN150i-NPP Single Substrate Spin Processor5
Drying Oven VWR & Memmert6
Benchtop Laboratory Laminator7
Hot-Press
Ultra Sonicator9
Laminar Flow Cabinet10
Filament and Resin 3D Printer11
Modular Compact Rheometer12
Pump Equipment
Pump Equipment
Pump Equipment 13 Organs-on-Chip Culture Laboratory 14 Whitley H35 Hypoxystation 14
Pump Equipment 13 Organs-on-Chip Culture Laboratory 14 Whitley H35 Hypoxystation 14 Safety Cabinets – Scanlaf Safe 1200 14
Pump Equipment13Organs-on-Chip Culture Laboratory14Whitley H35 Hypoxystation14Safety Cabinets – Scanlaf Safe 120014Eppendorf Centrifuge 5810/ 5810 R15
Pump Equipment13Organs-on-Chip Culture Laboratory14Whitley H35 Hypoxystation14Safety Cabinets – Scanlaf Safe 120014Eppendorf Centrifuge 5810/ 5810 R15TEER measurement / EVOM315
Pump Equipment13Organs-on-Chip Culture Laboratory14Whitley H35 Hypoxystation14Safety Cabinets – Scanlaf Safe 120014Eppendorf Centrifuge 5810/ 5810 R15TEER measurement / EVOM315regenHU 3DDiscovery – 3D Bioprinter16
Pump Equipment13Organs-on-Chip Culture Laboratory14Whitley H35 Hypoxystation14Safety Cabinets – Scanlaf Safe 120014Eppendorf Centrifuge 5810/ 5810 R15TEER measurement / EVOM315regenHU 3DDiscovery – 3D Bioprinter16Organs-on-Chip Microscopy17
Pump Equipment13Organs-on-Chip Culture Laboratory14Whitley H35 Hypoxystation14Safety Cabinets – Scanlaf Safe 120014Eppendorf Centrifuge 5810/ 5810 R15TEER measurement / EVOM315regenHU 3DDiscovery – 3D Bioprinter16Organs-on-Chip Microscopy17Zeiss Axiolmager.M217

OOCF Laboratory Equipment

BioMEMS Laboratory

The production of microfluidic devices sometimes requires very specific tools. The BioMEMS laboratory provides the necessary equipment for the production and testing of these devices. It consists of equipment for soft lithography and microfabrication in general. Below are some of the instruments listed, needed for chip production and to work with different types of silicone elastomers. If you are interested in using the lab and need training on the equipment, please contact the <u>lab manager</u> in charge.

HTP-200 Henniker Plasma Cleaner

Specifications	
Interface	5.7" Color TFT Display
Chamber dimensions	6" diameter, 9" length
Power	0-200W, continuously variable output
Gas Medium	Oxygen
Vacuum pump	Pfeiffer HISCROLL 6

Expanded Plasma Cleaner PDC-002	
Specifications	
Adjustable RF power settings	Low, Medium, High
Maximum RF power (W)	30
Chamber dimensions	6" diameter x 6.5" length Pyrex chamber
Gas Medium	Oxygen
Vacuum pump	Scrollvac 7 plus

Background: The Plasma cleaner allows you to make a glass-PDMS <u>microfluidic chip</u>, while bonding the PDMS replica containing the molded microchannel on a glass slide. Besides, the plasma cleaner will also allow you to bond together two PDMS replica to manufacture a multi-layer microfluidic devices.

SPIN150i-NPP Single Substrate Spin Processor		
Specifications		
Wafers	Up to 6" (150mm)	
Substrates	Up to 4" x 4" (100mm)	
Material	Natural Polypropylene (NPP)	
RPM (Depending on	12.000	
Substrate)		
Rotation	CW& CCW	

Background: The Spin Processor is used to produce a thin PDMS layer (if you are interested in how this process works, <u>here</u> you can find additional information).

Drying Oven VWR DRY-Line DL 115 & Memmert UP 400 Heating Cabinet		
	DRY-Line	
Specifications		
Volume (l)	115	53
Programmable	No	Yes
Temperature Profiles		
Maximum load	15kg/tray, 45kg in sum of all	30kg/tray, 90kg in sum of all
capacity of trays	trays trays	
Settable temperature	5°C above ambient temperature	5°C above ambient
range	up to 220°C temperature up to 220°C	

Background: Many polymers, such as PDMS, show curing temperature dependent material properties. With an oven set at a standard 60° Celsius, most chips can easily be cured over 12 hours, whereas specific temperature settings can be done with a second oven for curing at various temperatures.

|--|

Specifications	
Laminated samples dimensions	Unlimited length up to 580 mm in width
Top and bottom rolls	Ø50 x 610
dimensions (mm)	
Top and bottom rolls Material	Steel core and are covered with 80 durometer silicone
	rubber
Drive	Bottom roll driven, top roll idle
Compressed air	Max pressure 6 bar (adjustable for differing levels of
	laminating pressure)
Laminating pressure (LP)	Approximated by using the following formula:
	LP = (3.4 x line pressure) / sample width
Controls	Speed, unit of measure and jog functions
Laminating speeds (cm/min)	30-375

Background: Lamination can be used to achieve a successful bond, with no air bubbles between the plastic substrate and film, no distortion of microfeatures, and minimum deformation of the device (<u>here</u> you can find additional information)

Hot-Press	
Specifications	
Model	P/O/Weber Manual 2-Column Laboratory Press Model
	PW 10 H
Hot-/Cooling Plate System	Model HKP 300
Pressforce max. (kN)	130
Piston stroke max. (mm)	50
Temperature max. (°C)	300
Heating plate dimension (mm)	Ø165

Background: The hot press can be used for (but not limited to) pressing to layers of BioMEMS chips together, such as PMMA, COC or PDMS, while controlling the temperature of both, top and bottom plate, independently. Furthermore, very thin and structured membranes in the micrometer range can be produced successfully.

Bench top cleaning unit, USC 300 TH – Ultra Sonicator	
UTRAGE CRANE USC-TH USC-TH	
Specifications	
Capacity (l)	2.8
Frequency (kHz)	45
Heating power (W)	200
Tank W×D×H (mm)	237×134×100

Background: Ultrasonic cleaning of e.g. SU8-silicon wafers and micromachined molds works through the creation of cavitation bubbles induced by high frequency sound waves. It therefore produces high forces on contaminants adhering to (hard material) substrates. The sonicator can also be used to fasten dissolution of chemicals. With the independently operational temperature control it can also function as a water bath for an even heating of solutions.

Laminar Flow Cabinet - Monmouth Circulaire VLFT1500	
Specifications	
Quantity	2
Dimensions (working area) (mm)	1480 / 530 / 720 mm (WxHxD)

Background: Although soft lithography has the advantage of not requiring a cleanroom environment, the fabrication of a microfluidic device still is a delicate process. to avoid contamination of the devices with dust particles, a laminar flow cabinet is beneficial.

•

•

Filament 3D printer – Prusa i3 MK3

Specifications	
Quantity	1
Dimensions (working area) (mm)	250 / 210 / 210 mm (WxHxD)

Resin Direct Laser Printing 3D printer – Phrozen Sonic Mini 8k	
Specifications	
Quantity	1
Dimensions (working area) (mm)	165 / 72 / 180 mm (WxHxD)
XY Resoultion	22 μm
Layer Thickness	0.01-0.3 mm

Background: For prototyping and the fast production of mountings, holder, etc. different 3Dprinting technologies are of interest, depending on the application of the printed part. A new design of a microfluidic chip for example can quickly be printed after the design to test a concept.

Modular Compact Rheometer – MCR 102 e

Specifications	
Quantity	1
Dimensions (working area) (mm)	444 / 678 / 586 mm (W x H x D)
Measure cone	25 mm / 1°

Background: The stiffness of hydrogel is an important factor for cells and can influence their phenotype, proliferation, reproducibility of experiments, etc. With the Rheometer, the mechanical properties, such as fluid flow in response to applied forces of visco-elastic materials, can be determined.

Pump Equipment				
Туре	Product Name	Quantity	Technology	Range
Peristaltic	CorSolutions PeriWave	2	Peristaltic Flow	\pm 20 to 7000
Pump	Nano		Control	nL/min
Peristaltic	CorSolutions PeriWave	2	Peristaltic Flow	\pm 0.1 to 50
Pump	Micro		Control	μL/min
Peristaltic	ISMATEC REGLO	1	Peristaltic Flow	4 x 0.002 to 35
Pump	Digital MS-4/8 (ISM834)		Control	mL/min
Syringe Pump	Harvard Apparatus	1	Back pressure	$0.5~\mu L$ to $50~mL$
	Dual Syringe Pump (70-2209)		flow	syringes
Syringe Pump	Harvard Apparatus	4	Back pressure	$0.5 \ \mu L$ to $50 \ m L$
	Dual Syringe Pump (70-2212)		flow	syringes
Pos. Pressure	Elveflow OB1 Pressure	1	Piezoelectric	4 x 0 to 200 kPa
Controller	Controller MK3			$(\pm 0.006\%)$
Pos. Pressure	Fluigent Flow EZ	1	Modular pressure	0 to 69 mBar
Controller	69mbar	_	control system	
Neg. Pressure	Fluigent Flow EZ -	2	Modular pressure	-800 to 0 mBar
Controller	800mbar	2	control system	-0 1 (1
Vacuum	Laboport	2	Vacuum Pump	≤ 8 mbar (abs.
Pump		1	D 0 11	pressure)
Vacuum	Varian IDP3	1	Dry Scroll	$3.3 \times 10^{-1} \text{ mbar}$
Pump	In house development	6	Vacuum Pump	(abs. pressure)
Vacuum Dump	m-nouse development	0	(Breather System)	- 200 to 0 mbar
Fump /			System	(uynamic sinus
Controller				pressure signal)
Controller				or -60 mbar
				static pressure
Vacuum	Pfeiffer HISCROLL 6	1	Scroll	0.02 mbar
Pump			Vacuum	endpressure
			Pump	Ĩ
Vacuum	LabTec VP18 Plus	1	Vacuum Pump	\leq 18 l/min
Pump				\leq 20 mbar

We also have various flow sensors, valves and the necessary accessories and software to operate the pumps and create microfluidic setups. For more detailed information and enquiries regarding the use of the equipment, please contact the <u>lab manager</u>.

Organs-on-Chip Culture Laboratory

The Organs-on-Chip Culture Laboratory is a BSL-2 laboratory equipped with state-of the art cell biology equipment and additionally specific equipment for organs-on-chip. Listed below is some of the most important equipment, standard and auxiliary equipment (e.g. incubators etc.) were left out. If you are interested in using the lab and need training on the equipment, please contact the <u>lab manager</u> in charge.

Whitley H35 Hypoxystation	
Image: A control of a cont	
Specifications	
Capacity (l)	300
Port Airlock Capacity	Accommodates up to 44 x 96 well plates or 84 x T25s
Airlock Size (l)	12
Gas Supplies	CO2/Air/N2

Background: Creates hypoxic and anoxic conditions within a controlled and sustained workstation environment. It is ideal to work with cells and accurately control oxygen, carbon dioxide, temperature and humidity.

Safety Cabinets – Scanlaf Safe 1200	0
Specifications	
Quantity	3
Dimensions (working area) (mm)	120x70x60 (WxHxD)

Background: To ensure a sterile working environment, our lab has three safety cabinets for cell culture practices. <u>The Scanlaf Safe Mars 1200</u> are class 2 safety cabinets providing a laminar flow inside the hood and filtering the air through a HEPA filter.

Eppendorf Centrifuge 5810/ 5810 R

Specifications	
Rotor type	S-4-104
Max. Number of revolutions // cf	3900rpm // 3214g
Dimensions (working area) (mm)	120x70x60 (WxHxD)
Sample capacity	56 falcon tubes of 15 ml
	28 falcon tubes of 50 ml
Features	Aerosol-tight caps, temperature control

Background: A temperature controlled high quality centrifuge is a staple of any BSL2 laboratory and allows for the handling of potentially infected patients' materials. With a programmable user-friendly interface, a range of settings can be applied to accommodate any sample-specific needs. For more details, check out the <u>Operating Manual</u>.

Background: Measuring the trans-endo-epithelial-resistance (TEER) of organs-on-chip models - such as the lung - is an important assessment method for a non-disruptive validation of the confluency of a cell layer. With the additional STX2-Plus electrode not only a wider impedance range can be achieved, it also offers a lower noise-to-signal ratio. For more details, please refer to the <u>EVOM3 webpage</u>.

Specifications		
Technology	3D bioprinting	
Material	Bio-ink/organic	
	 Cells, bioactives and signal molecules 	
	 Hydrogels and biopolymers 	
	 Polycaprolactone and thermopolymers 	
	Calcium phosphates	
	Collagen, Hyaluronic acid and gelatins	
Build volume (mm)	130x90x60	
Precision	\pm 10 µm (resolution is highly dependend on material	
	used)	
Temperature control	Up to 80°C	
Others	Viscosity range up to 10000PaS	
	5µl dispensing resolution	
	No dead volume	
	1 hot melt extrusion print head	
	BioCAD software	

Background: 3D-BioPrinting has the potential to be the future of not only high throughput Organs-on-Chip production but also being a cornerstone for efficient Tissue Engineering applications. Our bioprinter is equipped with three different print heads (thermo polymer extruder, cell friendly micro needle dispensing, time-pressure contact dispenser) with an additional UC-curing kit and resides in a sterilizable flow hood for live cell printing.

Organs-on-Chip Microscopy

Zeiss Axiolmager.M2

Specifications		
Category	Widefield, fluorescence, upright microscope	
Camera/Detectors	Axiocam 305 mono, Axiocam 305 color	
Light source	VIS-LED, Halogen HXP120	
Objectives	Mounted: 5x, 10x, 20x LD neofluar, 40x LD neofluar	
-	Additionally available: 1.25x, 20x, 40x, 100x	
Software	ZEN 3.1 (blue edition)	
Special applications	MEMS-chip validation	
	Additional environmental chamber for live cell imaging	

Background: For surface analysis and validation of chips as well as for measurements of active parts of a chip (e.g. bulge test), an upright microscope is optimally suited. Furthermore, with the addition of a custom-made incubation chamber, environmentally controlled (temperature, CO₂, humidity) long-term experiments with live cells on-chip can be conducted.

ThermoFischer EVOS M7000

pentu		
Specifications		
Category	Widefield, fluorescence, inverted microscope	
Camera/Detectors	CMOS 3.2 MP mono and color	
Light source	LED	
Objectives	4x, 10x, 20x, 40x	
Software	EVOS Analysis and Celleste Image Analysis	
Special applications	Environmental control/Live-imaging,	
	Multi-well plate scanning	

Background: Fulfilling the need for userfriendly, quick scanning of chips and multiwell-plates, the EVOS M7000 is also equipped with an incubation chamber (temperature, CO₂, humidity controlled) for long-term live imaging. An additional hose with inlets for tubings is available.